

Changing Market Structure and Evolving Ways to Compete: Evidence from Retail Gasoline

Taehwan Kim (김태환) Center for International Energy Cooperation Korea Energy Economics Institute

July 2019

Process innovation: from full service to self service

https://365v.co.kr/article/1481865330356/22000000

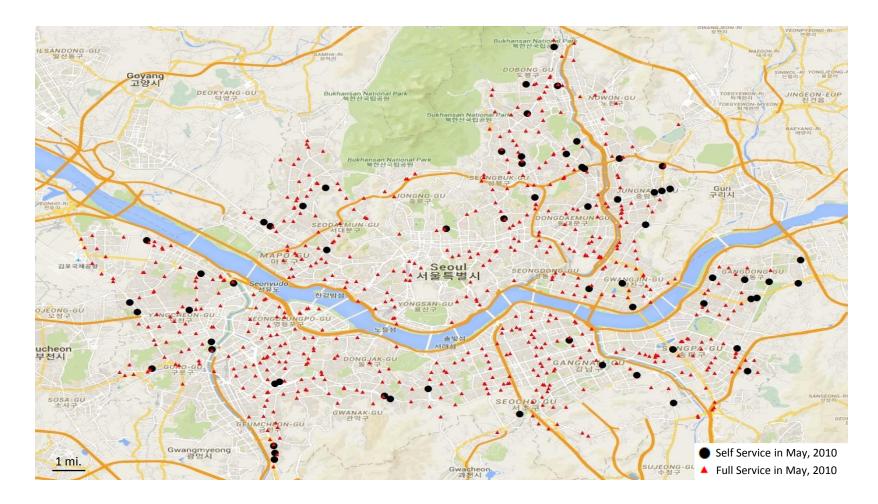
http://www.ekn.kr/news/article.html?no=326856

http://blog.naver.com/PostView.nhn?blogId=pmh0318&logNo=220969572024

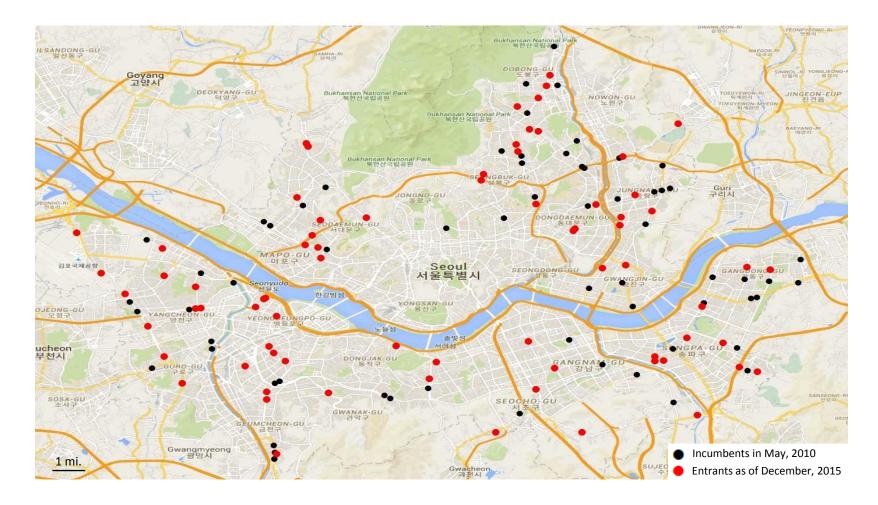
http://www.ichannela.com/news/main/news_detailPage.do?publishId=000000067006

Why gasoline market?

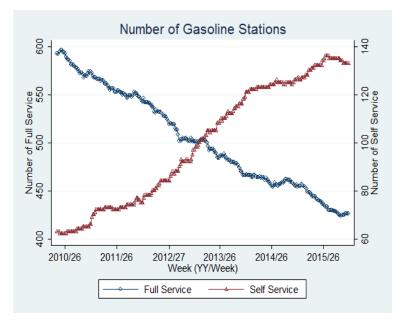
Nice to:

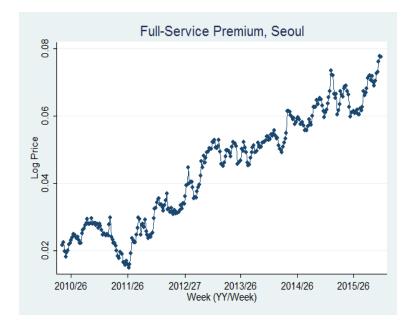

- observe the pricing behavior of sellers by product level
- examine the effect of an innovation of self-service technology on price

http://bundling.tistory.com/84


Research motivation: Market transition

Location of Gasoline Stations in Seoul


Research motivation: Market transition


Expansion of Self-Service Stations in Seoul

Stylized fact: the evolution of full-service premium

The Change in the Number of Stations

The Increasing Full-Service Premium

Research question

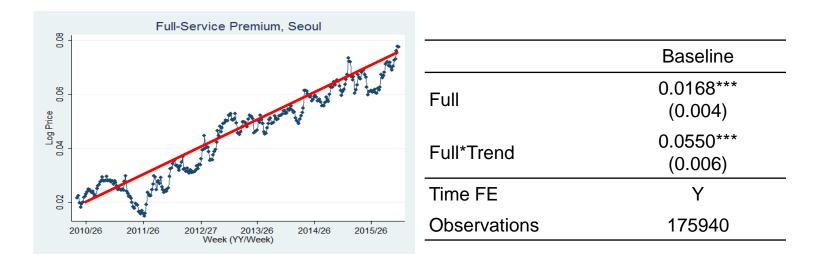
- Why does the price gap increase during the transition?
 - OBVIOUS if the F-S vs. S-S markets are sufficiently segmented
- Insight from general models of monopolistic competition
 - Positive profit gives another competitor an incentive to enter (i.e., self-serve market)
 - The entry shifts incumbent's residual demand to the left \rightarrow price falls

Preview of findings

- 1) Competition story alone isn't enough to explain the gap
 - Not OBVIOUS: the markets are not segmented during the transition
 - based on difference-in-difference estimation
- 2) Confirmation of competitive effects on prices
 - (direct effect) self-service sellers offer lower price
 - (indirect effect) self-service sellers fall their nearby competitors
 - No significant effect of full-service sellers on prices
- 3) Evidence on competition through product differentiation
 - a higher premium to consumers who buy a bundle of gas and services
 - descriptive evidence on product differentiation and supplementary analyses

Data

- Overview
 - Daily station-level data from May 2010 to December 2015, from OPINET
 - ✓ Wednesday only (but the loss of the information is minimal)
 - Transactions data, automatically uploaded at OPINET
 - Station characteristics: brand, service, multiproduct, location
 - Information on stations' promotion & price, collected on May 2017
- Notes
 - Inferred information on entry/exit from the price-reporting regulation
 - Two measures of competitive conditions: numbers & distances


	Mean	SD	Min	Max	Mean	SD	Min	Max
Number of	Full-S	ervice	e Com	petitors	Self-S	ervice	e Com	petitors
Within 0.5 mile $(\#)$	1.98	1.54	0.00	10.0	0.41	0.67	0.00	4.0
Within 1.0 mile $(\#)$	7.15	3.44	0.00	21.0	1.33	1.32	0.00	7.0
Distance to	Full-S	ervice	e Com	petitors	Self-S	ervice	e Comj	petitors
1st nearest (mi)	0.32	0.22	0.01	2.70	0.89	0.63	0.02	3.50
2nd nearest (mi)	0.50	0.24	0.03	2.71	1.31	0.70	0.12	4.12

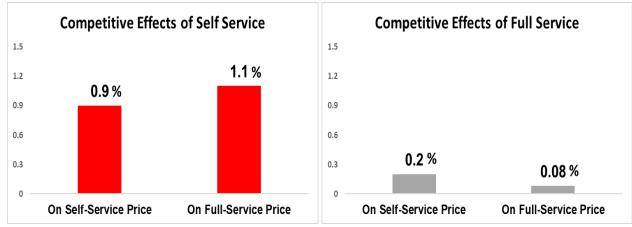
Empirical strategy

is to find economic variables making ϕ insignificant

- Static concept explanation when assuming segmented market
 - Increase in # S-S stations \rightarrow High competition between S-S
 - Decrease in # F-S stations \rightarrow Low competition between F-S
 - → It predicts an increasing price gap between F-S and S-S
- Identify the increasing price gap b/w F-S vs. S-S
 - $\ln P_{it} = \theta Full_{it} + \phi (Full_{it} * Trend_t) + \mu_t + \varepsilon_{it}$ where Trend $\in (0,1]$

Empirical strategy

- Hypothesis #1: station characteristics with systematical correlation
 - $\ln P_{it} = \zeta X_{it} + \delta_i + \theta Full_{it} + \phi (Full_{it} * Trend_t) + \mu_t + \varepsilon_{it}$
 - X: covariates including brands, brand share, multiproduct.
- Hypothesis #2: competition story (two competition measures)
 - $\ln P_{it} = \beta_1 \operatorname{Num}_{it}^{SS} + \beta_2 \left(\operatorname{Num}_{it}^{SS} * \operatorname{Full}_{it} \right) + \beta_3 \operatorname{Num}_{it}^{FS} + \beta_4 \left(\operatorname{Num}_{it}^{FS} * \operatorname{Full}_{it} \right)$ $+ \zeta X_{it} + \delta_i + \theta \operatorname{Full}_{it} + \varphi (\operatorname{Full}_{it} * \operatorname{Trend}_t) + \mu_t + \varepsilon_{it}$
 - $\ln P_{it} = \beta_1 \ln Dist_{it}^{SS} + \beta_2 (\ln Dist_{it}^{SS} * Full_{it}) + \beta_3 \ln Dist_{it}^{FS} + \beta_4 (\ln Dist_{it}^{FS} * Full)$ + $\zeta X_{it} + \delta_i + \theta Full_{it} + \phi (Full_{it} * Trend_t) + \mu_t + \varepsilon_{it}$

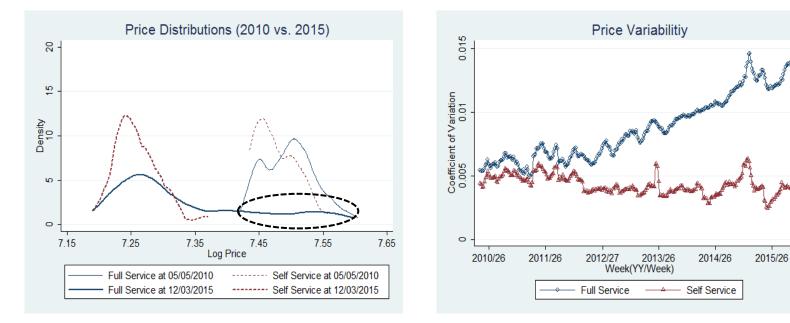


Result #1: competition story doesn't explain well

	Baseline	Controls Included	Nums included	Distances Included
Full	0.0168*** (0.004)	0.0196*** (0.006)	0.0231** (0.010)	0.0168* <u>(0.010)</u>
Full*Trend	0.0550*** (0.006)	0.0477*** (0.006)	0.0486*** (0.006)	0.0495*** (0.006)
Station FE	Ν	Y	Y	Y
Controls	Ν	Y	Y	Y
Observations	175940	175940	175940	175940

Robust standard errors in parentheses, clustered by station

• Competitive effects: when the distance to nearby competitors doubles



Red: significance at the 1% level & Grey: insignificance at the 10% level

Stylized fact: the evolution of full-service premium

• Take a <u>closer</u> look at the increasing full-service premium

Price distributions on 2010 vs. 2015

Time Series of Coefficient of Variation

- In which theory a seller charges a higher premium?
- Product differentiation and its softening effect on competition
 - Mazzeo (2002, RESTAT), motel industry
 - Basker & Noel (2009, JEMS) and Matsa (2011, QJE), supermarket
- Search friction and its softening effect on competition
 - Sorensen (2000, JPE) and Ching (2010, IJIO), pharmaceutical market
 - Lewis (2011, IJIO) and Kim (2018, RIO), retail gasoline
 - Ellison and Ellison (2009, Econometrica), online shopping

(C)

Nerey Compony Blog

(b)

• Provide "free" bundled offers (collected on May 17, 2017)

	# Full Service	# Self Service
Reward points	29	4
Carwash	9	3
Carwash & Coffee	1	0
Carwash & Coffee & Washer fluid	1	0
Coffee or Tea	3	1
Coffee & Washer fluid	1	0
Coffee & Facial tissue	2	0
A bottle of water	3	0
Facial tissue	1	1
A bottle of water or Facial tissue	1	1
Car Inspection	2	0
Service for Diplomatic vehicle	1	0
Coffee, Soda, Noodle, Copy/Fax, Lounge	0	1
Total #: 539 stations	55 /392 (14%)	11 /147 (7%)

		Full Service		\mathbf{Self}	Service
	May 17, 2017	# Stations	Avg. Log Price	e # Stations	Avg. Log Price
	Bundled	55	7.444	11	7.321
	Not Bundled	337	7.360	136	7.298
bundling premium 🚽	Difference		0.085		0.023
0.	P-value		(0.000)		(0.073)
	All	392	7.372	147	7.300
	Difference			$0.072 \leftarrow full-ser$	vice premium
	P-value			0.000)	•

- Supplement descriptive evidence using my price panel
- Identify stations in my sample that provide
 - 1. bundled products in 2017
 - 2. not bundled products in 2017

	Full	Full Service		Self Service		
May 05, 2010	# Stations	Avg. Log Pric	e # Stat	tions Avg. L	og Price	
Bundled in 2017	48	7.514	2	7.	503	
Not bundled in 2017	290	7.499	50) 7.	475	
Difference	little	→ 0.015		0.	028	
P-value		(0.011)		(0.	268)	
All	338	7.501	52	2 7.	476	
Difference			0.025			
P-value			(0.000) fu	<u>ll-service p</u>	<u>remium</u>	

	Full	Full Service		Self	Service
Dec 16, 2015	# Stations	Avg. Log Price	e #	Stations	Avg. Log Price
Bundled in 2017	55	7.407		7	7.282
Not bundled in 2017	332	7.326		115	7.258
Difference	significant	0.081			0.023
P-value	- 0	(0.000)			(0.156)
All	387	7.338	_	122	7.259
Difference			0.078	full cor	vice premium
P-value		((0.000)	iuii-sei	vice premium

- Supplement the descriptive evidence, using price data
- Examine the stability of price rankings
 - Search models
 - \checkmark Uninformed consumers and price dispersion for one homogenous good
 - Insight from models of search
 - ✓ Customers search for a low price, so sellers' relative prices change from one time to the next
 - Hypothesis
 - Sellers' relative prices should go up and down <u>if a product of sellers is homogenous</u> (holding other station characteristics constant)
- Create price rankings for each week and calculate transition probabilities

					T+1					
		1	2	3	4	5	6	7	8	Total
Lowest 12.5%	1	77.35	20.03	2.14	0.35	0.09	0.04	0.00	0.00	100.0
	2	18.32	59.12	20.58	1.69	0.21	0.07	0.00	0.02	100.0
	3	2.73	18.19	59.71	18.25	0.97	0.11	0.02	0.01	100.0
Т	4	0.67	2.38	15.30	66.23	14.92	0.45	0.04	0.01	100.0
	5	0.28	0.43	1.74	12.83	73.93	10.56	0.20	0.03	100.0
	6	0.15	0.13	0.20	0.68	9.37	81.04	8.37	0.07	100.0
	7	0.04	0.06	0.08	0.17	0.37	7.43	86.53	5.35	100.0
Highest 12.5 %	8	0.06	0.05	0.05	0.05	0.07	0.28	4.87	94.58	100.0
Total		12.37	12.56	12.48	12.56	12.46	12.45	12.52	12.60	100.0

Price Octile Transition Matrix, from one week to the next

					T+1					
		1	2	3	4	5	6	7	8	Total
Lowest 12.5%	1	77.35	20.03	2.14	0.35	0.09	0.04	0.00	0.00	100.0
	2	18.32	59.12	20.58	1.69	0.21	0.07	0.00	0.02	100.0
	3	2.73	18.19	59.71	18.25	0.97	0.11	0.02	0.01	100.0
т	4	0.67	2.38	15.30	66.23	14.92	0.45	0.04	0.01	100.0
	5	0.28	0.43	1.74	12.83	73.93	10.56	0.20	0.03	100.0
	6	0.15	0.13	0.20	0.68	9.37	81.04	8.37	0.07	100.0
	7	0.04	0.06	0.08	0.17	0.37	7.43	86.53	5.35	100.0
Highest 12.5 %	8	0.06	0.05	0.05	0.05	0.07	0.28	4.87	94.58	100.0
Total		12.37	12.56	12.48	12.56	12.46	12.45	12.52	12.60	100.0

Price Octile Transition Matrix, from one week to the next

✓ Relative prices are more stables for higher-priced stations

• Ranking stability test:

$$\begin{split} \text{Stable}_{it} &= \beta \text{Octile}_{it-1} + \theta \text{Full}_{it} + \gamma \mathbf{X}_{it} + \delta_i + \mu_t + \epsilon_{it} \\ \text{where stable} &= \begin{cases} 1 & \text{if Octile}_{it-1} = \text{Octile}_{it}; \\ 0 & \text{if Octile}_{it-1} \neq \text{Octile}_{it}. \end{cases} \end{split}$$

	Baseline	By Service
Octilo	0.0296***	0.0092*
Octile	(0.002)	(0.005)
Octilo*Eull		0.0251***
Octile*Full		(0.006)
Full	0.0433***	-0.0390***
Full	(0.016)	(0.023)
Num ^{ss}	-0.0000	0.0003
Nullies	(0.004)	(0.004)
Num ^{FS}	0.0095***	0.0104***
	(0.0023)	(0.0023)
Station and Time FE	Yes	Yes
Observations	174648	174648
% predicted outside [0, 1]	2%	3%

Conclusion

- By service level, different strategic choices are chosen:
 - F-S stations increasingly differentiate their product to compete for less-pricesensitive consumers
 - S-S stations decreases their local competitors' price and compete for pricesensitive consumers
- We do not know what this market will look like in the future

"기름을 넣는곳 → 기름도(!) 넣는곳"

택배 받고 자동결제까지... 융합 서비스 다각화 '스마트스테이션'

수소, 전기, 휘발유, 경유, LPG 연료를 한 곳에서 채울 수 있는 '복합에너지스테이션'

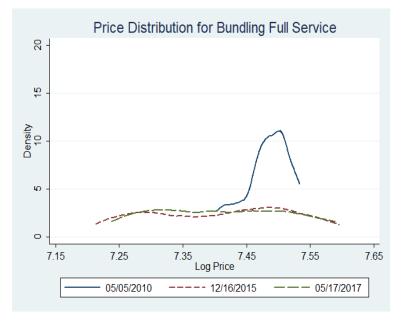
"There's a shift in people buying gas based on the quality of the sandwich as opposed to getting a sandwich based on the price of gas,"

- Vice President for NACS in Bloomberg interview (Aug 18, 2017) *NACS: National Association of Convenience Stores in US 감사합니다

Appendix: summary statistics

Variable	Description	Mean	SD	Min	Max
Р	Price of gasoline (unit: KRW/liter)	1904.7	206.7	1317	2490
$\ln P$	Log price of gasoline	7.54	0.11	7.18	7.82
Full	Station offering full-serve gasoline	0.83	0.37	0	1
SK	Station brand: SK Energy	0.36	0.48	0	1
GS	Station brand: GS Caltex	0.25	0.43	0	1
SO	Station brand: S-Oil	0.11	0.31	0	1
HD	Station brand: Hyundai Oilbank	0.12	0.33	0	1
AD	Station brand: Alddle	0.02	0.13	0	1
Unbranded	Station brand: Unbranded	0.03	0.17	0	1
Brand Share	Share of same-brand stations within 1.5 miles	0.27	0.16	0	1
Multi	Station selling regular and premium gasoline	0.33	0.47	0	1
Store ^a	Station having a convenience store	0.09	0.28	0	1
$Carwash^{a}$	Station having an automatic carwash equipment	0.67	0.46	0	1
Repair ^a	Station having a auto-repair facility	0.26	0.44	0	1
$\mathrm{Income}^{\mathrm{b}}$	Household monthly income (unit: KRW million)	3.69	0.43	2.72	4.49
Car^b	Number of vehicles (unit: thousand)	104.0	41.8	37.2	193.65
Stations	Number of gasoline stations in Seoul	602.8	25.4	558	658


Note: Average across all stations in all time periods, except for Income and Car


^a Observations at the station level in two days; the first Wednesday of May 2010 and 2011

 $^{\rm b}$ Observations at the district level in two months; May 2010 and May 2011

Appendix: price distribution comparison

Appendix: who exits? who converts?

- Define <u>F-S stations' choices</u> based on entry & exit information
 - "permanent exit"
 - "conversion to SS"
 - "FS continuation"
- Assume one choice for each station during the sample period:
 - # of full-service stations in the market: 593 (first day)

	permanent exit	conversion to SS	FS continuation
# of instances, 2010-2015	122	65	406

Appendix: who exits? who converts?

• Station i's decision to be correlated with intensity of competition:

$$\log\left(\frac{\pi_{i,j}}{\pi_{i,j}}\right) = \alpha_j + \beta_j \text{Num}_i^{\text{SS1}} + \gamma_j \text{Num}_i^{\text{FS1}} + \zeta_j \mathbf{Z}_i + \varepsilon_j$$

where j = {"permanent exit" or "conversion to SS"} and J = "FS continuation"

- $\frac{\pi_{i,j}}{\pi_{i,j}}$: the odds that full-service station i falls in category j as opposed to the baseline outcome
- Num^{SS1}; Num^{FS1}: the number of self- and full-service competitors within one mile
- Z: covariates (e.g., presence of store/carwash/repair, brand, income, car, multiproduct)
- ε: robust standard error, clustered by Numrict
- \checkmark β and γ are the relative-probability ratios of one decision to "FS continuation"

Appendix: who exits? who converts?

• Relative probability, as opposed to "FS continuation"

	(1)	(2)
	May 05, 2010	May 04, 2011
Outcome: permanent exit		
Num ^{SS1}	1.293**	1.286***
Num	(0.145)	(0.125)
Num ^{FS1}	1.047*	1.073***
Nulli ^{, o}	(0.023)	(0.026)
Outcome: conversion to SS		
Num ^{SS1}	1.413*	1.345**
Numee	(0.267)	(0.178)
Num ^{FS1}	1.021	1.048
Num ^{, or}	(0.032)	(0.033)
Control variables	Y	Y
Observations	591	546
** n-5% · * n-10%		

** p<5%; * p<10%

✓ Greater price-competition *drives* high-cost sellers *out* of a market